Novel Insertion of Acetylene into σ-Alkynyl Palladium Complexes

By Y. Tohda, K. Sonogashira,* and N. Hagihara

(The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565, Japan)

Summary trans-[(PEt₃)₂PdCl(C \equiv CPh)] reacts with dimethyl acetylenedicarboxylate to give an insertion product, trans-[(PEt₃)₂PdCl{C(CO₂Me)=C(CO₂Me)C \equiv C-Ph}], a type important in acetylene catalytic oligomerisation processes.

Insertion of an acetylene into a transition-metal-alkynyl bond is a critical step in some acetylene oligomerisations with transition-metal catalysts (Scheme 1). No product of insertion into an alkynyl complex has been isolated, although there are many examples of insertion of acetylenes into an alkyl-2 or alkenyl-metal bond.³

$$L_nM + RC \equiv CH \longrightarrow L_nM \xrightarrow{C \equiv CR} CR = CH - C \equiv CR$$

SCHEME 1

We report the first example of insertion of acetylene into the alkynyl carbon–palladium bond. Reaction of the acetylide complex, trans-[(PR₃)₂PdX(C \equiv CPh)] (I; R =

† Satisfactory elemental analytical data were obtained.

Et, X = Cl) with dimethyl acetylenedicarboxylate in dioxan at 85° for 2 h, after chromatography on alumina, gave stable, white crystals of (II),† trans-[(PEt_3)_2PdCl{C(CO_2Me)}=C(CO_2Me)C \equiv CPh}], m.p. 163°; i.r. ν_{Pd-Cl} 298 cm $^{-1}$ (Nujol);

$$\begin{array}{c} \text{PEt}_3 \\ \text{CI-Pd-C} \equiv \text{CPh} \ + \ \text{MeO}_2\text{CC} \equiv \text{CCO}_2\text{Me} \longrightarrow \begin{array}{c} \text{PEt}_3 & \text{CO}_2\text{Me} \\ \mid & \mid & \mid \\ \text{PEt}_3 & \text{CI-Pd-C} \\ \mid & \text{PEt}_3 & \text{CI-Pd-C} \\ \mid & \text$$

Scheme 2

Raman $v_{C=C}$ 2200 cm⁻¹; $M(CH_2Cl_2)$ 612 (calc. 621·4); $\delta(CCl_4)$ 3·69 and 3·64 (CO₂CH₃), and 1·11 (characteristic 1; 4; 6; 4; 1 quintet⁴ for methyl resonances of the *trans*-PEt₃). The mass spectrum of complex (II) shows no parent ion, ready coupling of ligands occurring to give [Et₃PC(CO₂CH₃)= $C(CO_2CH_3)C \equiv CPh$]⁺ at m/e 361. The compound is thermally stable to ca. 220 °C and is unaffected by dry HCl

in ether solution at room temperature. Insertion products† analogous to (II) can be obtained with (I; R = Et, X =Br; and R = Bu, X = Cl, Br, and I) in 8-24% yields. Reaction of the methyl or σ -vinyl palladium complexes, trans-[(PEt₃)₂PdI(Me)] or trans-[(PBu₃)₂PdBr(CH=CPh₂)]† with dimethyl acetylenedicarboxylate gave similar insertion products, trans-[(PEt₃)₂PdI {C(CO₂Me)=C(CO₂Me)-(Me)] and trans-[(PBu₃)₂PdBr {C(CO₂Me)=C(CO₂Me)CH= CPh₂}],† in 40 and 74% yields, respectively. It is interesting that the phenyl or sterically hindered σ -vinyl complexes, trans-[(PEt₃)₂PdClPh] or trans-[(PEt₃)₂PdBr(CPh= CPh₂)],† gave no insertion product analogous to (II). Since insertion of acetylenes into transition-metal hydrides⁵ and alkyls2 is believed to give cis-vinyl derivatives, complex (II) may have the structure shown in Scheme 2.

(Received, 1st October 1974; Com. 1228.)

- ¹ L. S. Meriwether, M. F. Leto, E. C. Colthup, and G. W. Kennerly, J. Org. Chem., 1962, 27, 3930; A. Furlani, I. Collamati, and G. Sartori, J. Organometallic Chem., 1969, 17, 463; C. K. Brown, D. Georgiou, and G. Wilkinson, J. Chem. Soc. (A), 1971, 3120.
 - ² H. C. Clark and R. J. Puddephatt, Inorg. Chem., 1970, 9, 2670.
- ³ D. M. Roe, C. Calvo, N. Krishnamachari, K. Moseley, and P. M. Maitlis, J.C.S. Chem. Comm., 1973, 436.

 ⁴ E. W. Randall and D. Shaw, Mol. Phys., 1965, 10, 41; M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, 3074.

 ⁵ A. Nakamura and S. Otsuka, J. Amer. Chem. Soc., 1972, 94, 1886; T. Blackmore, M. I. Bruce, and F. G. A. Stone, J.C.S. Dalton, 1974, 106.